Human infection with avian influenza A/H7N9 virus: an assessment of clinical severity

Yu H, Cowling BJ, Feng L, Lau EH, Liao Q, Tsang TK, et al. Lancet. 2013 Jul 13;382(9887):138-45.

Background
Characterisation of the severity profile of human infections with influenza viruses of animal origin is a part of pandemic risk assessment, and an important part of the assessment of disease epidemiology. Our objective was to assess the clinical severity of human infections with avian influenza A H7N9 virus, which emerged in China in early 2013.

Methods
We obtained information about laboratory-confirmed cases of avian influenza A H7N9 virus infection reported as of May 28, 2013, from an integrated database built by the Chinese Center for Disease Control and Prevention. We estimated the risk of fatality, mechanical ventilation, and admission to the intensive care unit for patients who required hospital admission for medical reasons. We also used information about laboratory-confirmed cases detected through sentinel influenza-like illness surveillance to estimate the symptomatic case fatality risk.

Findings
Of 123 patients with laboratory-confirmed avian influenza A H7N9 virus infection who were admitted to hospital, 37 (30%) had died and 69 (56%) had recovered by May 28, 2013. After we accounted for incomplete data for 17 patients who were still in hospital, we estimated the fatality risk for all ages to be 36% (95% CI 26–45) on admission to hospital. Risks of mechanical ventilation or fatality (69%, 95% CI 60–77) and of admission to an intensive care unit, mechanical ventilation, or fatality (83%, 76–90) were high. With assumptions about coverage of the sentinel surveillance network and health-care-seeking behaviour for patients with influenza-like illness associated with influenza A H7N9 virus infection, and pro-rata extrapolation, we estimated that the symptomatic case fatality risk could be between 160 (63–460) and 2800 (1000–9400) per 100 000 symptomatic cases.

Interpretation
Human infections with avian influenza A H7N9 virus seem to be less serious than has been previously reported. Many mild cases might already have occurred. Continued vigilance and sustained intensive control efforts are needed to minimise the risk of human infection.

Link to full text

MMLAP and other EU Projects

Health system analysis to support capacity development in response to the threat of pandemic influenza in Asia
Making society an active participant in water adaptation to global change
Public Participation in Developing a Common Framework for Assessment and Management of Sustainable Innovation
Engaging all of Europe in shaping a desirable and sustainable future
Expect the unexpected and know how to respond
Driving innovation in crisis management for European resilience
Effective communication in outbreak management: development of an evidence-based tool for Europe
Solutions to improve CBRNe resilience
Network for Communicable Disease Control in Southern Europe and Mediterranean Countries
Developing the framework for an epidemic forecast infrastructure
Strengthening of the national surveillance system for communicable diseases
Surveillance of vaccine preventable hepatitis
European monitoring of excess mortality for public health action
European network for highly infectious disease
Dedicated surveillance network for surveillance and control of vaccine preventable diseases in the EU
Modelling the spread of pandemic influenza and strategies for its containment and mitigation
Cost-effectiveness assessment of european influenza human pandemic alert and response strategies
Bridging the gap between science, stakeholders and policy makers
Promotion of immunization for health professionals in Europe
Towards inclusive research programming for sustainable food innovations
Addressing chronic diseases and healthy ageing across the life cycle
Medical ecosystem – personalized event-based surveillance
Studying the many and varied economic, social, legal and ethical aspects of the recent developments on the Internet, and their consequences for the individual and society at large
Get involved in the responsible marine research and innovation
Knowledge-based policy-making on issues involving science, technology and innovation, mainly based upon the practices in Parliamentary Technology Assessment
Assessment of the current pandemic preparedness and response tools, systems and practice at national, EU and global level in priority areas
Analysis of innovative public engagement tools and instruments for dynamic governance in the field of Science in Society
Public Engagement with Research And Research Engagement with Society
Computing Veracity – the Fourth Challenge of Big Data
Providing infrastructure, co-ordination and integration of existing clinical research networks on epidemics and pandemics
Promote vaccinations among migrant population in Europe
Creating mechanisms for effectively tackling the scientific and technology related challenges faced by society
Improve the quality of indoor air, keeping it free from radon
Improving respect of ethics principles and laws in research and innovation, in line with the evolution of technologies and societal concerns
Investigating how cities in the West securitise against global pandemics
Creating a structured dialogue and mutual learning with citizens and urban actors by setting up National Networks in 10 countries across Europe
Identifying how children can be change agents in the Science and Society relationship
Establishing an open dialogue between stakeholders concerning synthetic biology’s potential benefits and risks
Transparent communication in Epidemics: Learning Lessons from experience, delivering effective Messages, providing Evidence